Loading [MathJax]/extensions/TeX/AMSsymbols.js

Ad Code

Responsive Advertisement
6/recent/ticker-posts

If A = R - {3} and B = R - {1}. Let f: A → B such that f(x) = (x-2)/(x-3) for all x ∈ A. Then show that f is bijective.


Given: 

A=R{3}

B=R{1}

f:AB such that f(x) = x2x3

To Prove:

(i) f(x) is one-one.

(ii) f(x) is onto.

Proof:

# Condition for One-One:

If f(x1)=f(x2) then 

x1=x2x1,x2A

OR If x1x2 then 

f(x1)f(x2)x1,x2A

(i) Let x1,x2A be any element such that:

f(x1)=f(x2)

x12x13 = x22x23

(x12)(x23)=(x13)(x22)

x1x23x12x2+6

=x1x22x13x2+6

3x12x2=2x13x2

3x1+2x1=+2x23x2

x1=x2

x1=x2x1,x2A

So, f(x) is one-one.


# Condition for Onto:

For every yB there exist xA such that

y=f(x)

OR Range = Codomain.

(ii) Let yB be any element

We need to find an element xA such that:

y=f(x)

Finding suitable value of x:

y = x2x3

(x3)y=(x2)

xy3y=x2

xyx=3y2

x(y1)=3y2

x=3y2y1(1)

If x=3 then,

3 = 3y2y1

3(y1)=(3y2)

3y3=3y2

3=2

which cannot be possible.

So, xR{3}=A

Using (1), we get

 f(x) = x2x3

= 3y2y123y2y13

= (3y2)2(y1)(3y2)3(y1)

= 3y22y+23y23y+3

= y1

f(x)=yyB

So, f(x) is onto.

Post a Comment

0 Comments

Ad Code

Responsive Advertisement