Ad Code

Responsive Advertisement
6/recent/ticker-posts

Class 9 Herons Formula Quiz

Math Quiz

Welcome to Math Quiz

Quiz Image

The name of the horizontal line in the Cartesian plane which determines the position of a point is called:

Origin
X-axis
Y-axis
Quadrants

Which of the following formula is used for finding the area of a triangle?

base $\times$ height
$\frac{1}{2}$ $\times$ base $\times$ height
$2$ $\times$ base $\times$ height
base + height

In Heron's formula $\sqrt{s(s-a)(s-b)(s-c)}$, what is the value of $s$ if $a, b,$ and $c$ are sides of the triangle?

$\frac{(a+b+c)}{4}$
$(a+b+c)$
$\frac{(a+b+c)}{2}$
$2a+2b+2c$

What is the area of the triangle having sides equal to $10$ cm, $16$ cm, and $24$ cm?

$25\sqrt{15}\;\text{cm}^{2}$
$35\sqrt{17}\;\text{cm}^{2}$
$15\sqrt{13}\;\text{cm}^{2}$
$15\sqrt{15}\;\text{cm}^{2}$

The sides of a triangle are in the proportion of $2 : 3 : 5$ and its perimeter is $200$ cm. The sides of this triangle are:

$20$ cm, $30$ cm, $50$ cm
$40$ cm, $60$ cm, $100$ cm
$80$ cm, $120$ cm, $200$ cm
None of These

The sides of a triangle are in the proportion of $2 : 3 : 5$ and its semi-perimeter is $200$ cm. The sides of this triangle are:

$20$ cm, $30$ cm, $50$ cm
$40$ cm, $60$ cm, $100$ cm
$80$ cm, $120$ cm, $200$ cm
None of These

The sides of a triangle are in the proportion of $2 : 3 : 5$ and its perimeter is $200\;\text{cm}$. The area of this triangle is:

$375\sqrt{23}\;\text{cm}^{2}$
$375\sqrt{21}\;\text{cm}^{2}$
$345\sqrt{23}\;\text{cm}^{2}$
$345\sqrt{21}\;\text{cm}^{2}$

If the perimeter of an equilateral triangle is $180\;\text{cm}$. Then its area will be:

$900\;\text{cm}^{2}$
$900\sqrt{3}\;\text{cm}^{2}$
$300\sqrt{3}\;\text{cm}^{2}$
$600\sqrt{3}\;\text{cm}^{2}$

The sides of a right-angled triangle are $122\;\text{m}$, $22\;\text{m}$, and $120\;\text{m}$ respectively. The area of the triangle is:

$1320\;\text{m}^{2}$
$1300\;\text{m}^{2}$
$1400\;\text{m}^{2}$
$1420\;\text{m}^{2}$

The third side of a triangle with given two sides $18\;\text{cm}$ and $10\;\text{cm}$, respectively and a perimeter equal to $42\;\text{cm}$ is:

$26\;\text{cm}$
$13\;\text{cm}$
$14\;\text{cm}$
$28\;\text{cm}$

The third side of a triangle with given two sides $9\;\text{cm}$ and $5\;\text{cm}$, respectively and a semi-perimeter equal to $21\;\text{cm}$ is:

$26\;\text{cm}$
$13\;\text{cm}$
$14\;\text{cm}$
$28\;\text{cm}$

The equal sides of the isosceles triangle are $12\;\text{cm}$, and the perimeter is $30\;\text{cm}$. The other side of this triangle is:

$5\;\text{cm}$
$6\;\text{cm}$
$7\;\text{cm}$
$8\;\text{cm}$

The area of an equilateral triangle of side $6\;\text{cm}$ is:

$900\;\text{cm}^{2}$
$18\;\text{cm}^{2}$
$9\sqrt{3}\;\text{cm}^{2}$
$56\sqrt{3}\;\text{cm}^{2}$

The base of a right triangle is $8\;\text{cm}$ and the hypotenuse is $10\;\text{cm}$. Its area will be:

$24\;\text{cm}^{2}$
$40\;\text{cm}^{2}$
$48\;\text{cm}^{2}$
$80\;\text{cm}^{2}$

The edges of a triangular board are $6\;\text{cm}$, $8\;\text{cm}$, and $10\;\text{cm}$. The cost of painting it at the rate of $9$ paise per $\text{cm}^{2}$ is:

Rs $2.00$
Rs $2.16$
Rs $2.48$
Rs $3.00$

The lengths of a triangle are $6\;\text{cm}$, $8\;\text{cm}$, and $10\;\text{cm}$. Then the length of perpendicular from the opposite vertex to the side whose length is $8\;\text{cm}$ is:

$4\;\text{cm}$
$6\;\text{cm}$
$5\;\text{cm}$
$2\;\text{cm}$

The length of each side of an equilateral triangle having an area of $9\sqrt{3}\;\text{cm}^{2}$ is:

$8\;\text{cm}$
$36\;\text{cm}$
$4\;\text{cm}$
$6\;\text{cm}$

If the area of an equilateral triangle is $16\sqrt{3}\;\text{cm}^{2}$, then the perimeter of the triangle is:

$48\;\text{cm}$
$24\;\text{cm}$
$12\;\text{cm}$
$36\;\text{cm}$

A triangular garden has sides $90\;\text{m}$, $140\;\text{m}$, and $80\;\text{m}$. A fence is to be put all around the garden. What will be the total cost of fencing at the rate of Rs $15$ per meter? A $5\;\text{m}$ wide space is to be left on one side for gate opening.

Rs $4525$
Rs $4975$
Rs $4575$
Rs $4230$

The base of an isosceles right triangle is $30\;\text{cm}$. Its area is:

$225\;\text{cm}^{2}$
$225\sqrt{3}\;\text{cm}^{2}$
$225\sqrt{3}\;\text{cm}^{2}$
$450\;\text{cm}^{2}$

Quiz Result

Post a Comment

0 Comments

Ad Code

Responsive Advertisement